# Impact of the use of fungicides on resistance development in Botrytis

### **Roland W. S. Weber**

Esteburg – Obstbauzentrum Jork Dept. of Food Science, Aarhus University

Jordbærkonference, Brædstrup (6 Nov. 2018)



Landwirtschaftskammer Niedersachsen Obstbauversuchsanstalt Jork

#### 1. Biology of Botrytis

- 2. Fungicide resistance in space and time
- 3. Results from Norway
- 4. Recommendations





#### **Botrytis on strawberries**



Primary infection at flowering

- $\rightarrow$  State of latency in receptacle of flower
  - $\rightarrow$  Fruit rot (primary infection) at onset of fruit ripening
    - $\rightarrow$  Secondary infections of further ripening fruits
      - $\rightarrow$  Uncontrollable epidemic

### Secondary infections: fruit-to-fruit spread



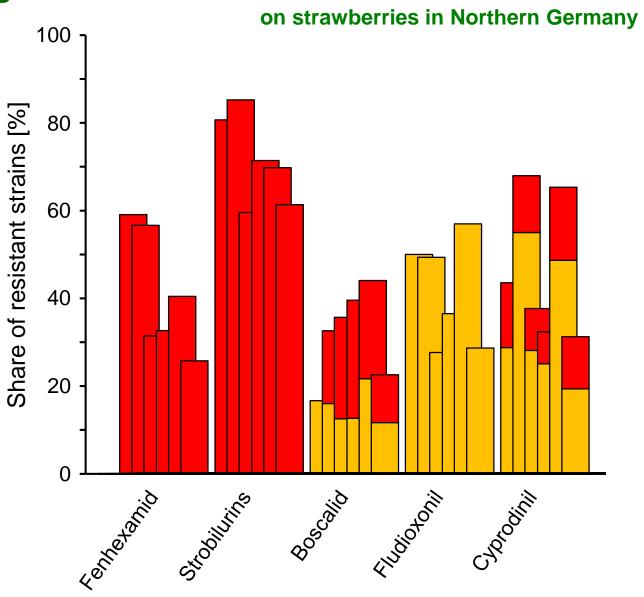


#### Fungicides with Botrytis activity

| Teldor          | Fenhexamid                  |                        |
|-----------------|-----------------------------|------------------------|
| Prolectus       | Fenpyrazamin                |                        |
| Switch          | Cyprodinil + Fludioxonil    |                        |
| Scala           | Pyrimethanil                |                        |
| Frupica SC      | Mepanipyrim                 |                        |
| Geoxe           | Fludioxonil                 |                        |
| Amistar         | Azoxystrobin                |                        |
| Candit          | Kresoxim-methyl             |                        |
| Signum          | Pyraclostrobin + Boscalid   |                        |
| Luna Sensation* | Trifloxystrobin + Fluopyram | * Pending registration |

#### All 5 groups are specific fungicides $\rightarrow$ risk of resistance development!

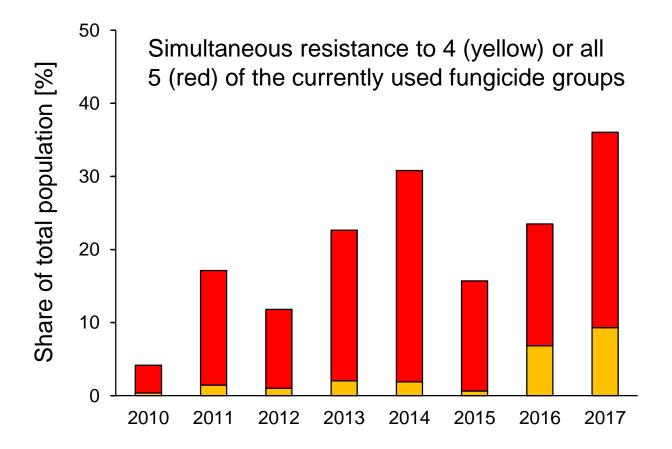
|                    | Type of resistance                            |  |  |
|--------------------|-----------------------------------------------|--|--|
| Hydroxyanilid      | target mutation                               |  |  |
| Strobilurin / Qol  | target mutation                               |  |  |
| Carboxamide / SDHI | target mutation (incomplete cross-resistance) |  |  |
| Anilino-Pyrimidine | target mutation and multi-drug resistance     |  |  |
| Phenylpyrrole      | multi-drug resistance only                    |  |  |


- 1. Biology of Botrytis
- 2. Fungicide resistance in space and time
- 3. Results from Norway
- 4. Recommendations








#### Single resistances 2010 2011 2012 2013 2014 2015





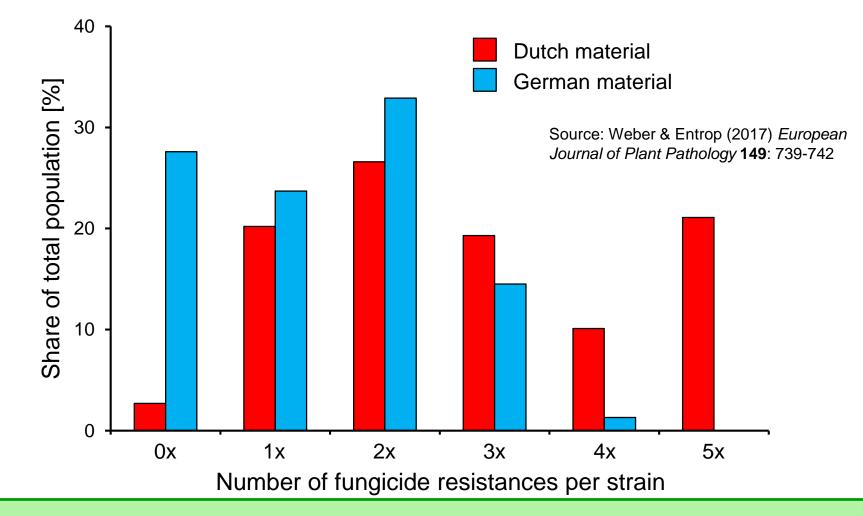


# Strains with multiple resistance on strawberries in Northern Germany








### **Spread of multi-resistant strains**

- 1. Stepwise acquisition of resistances to all fungicides somewhere
- 2. Spread by contaminated nursery material or immigration from outside
- 3. Local selection by intensive fungicide use





### Multiple resistance in strawberry nursery material: Netherlands *versus* Germany 2014



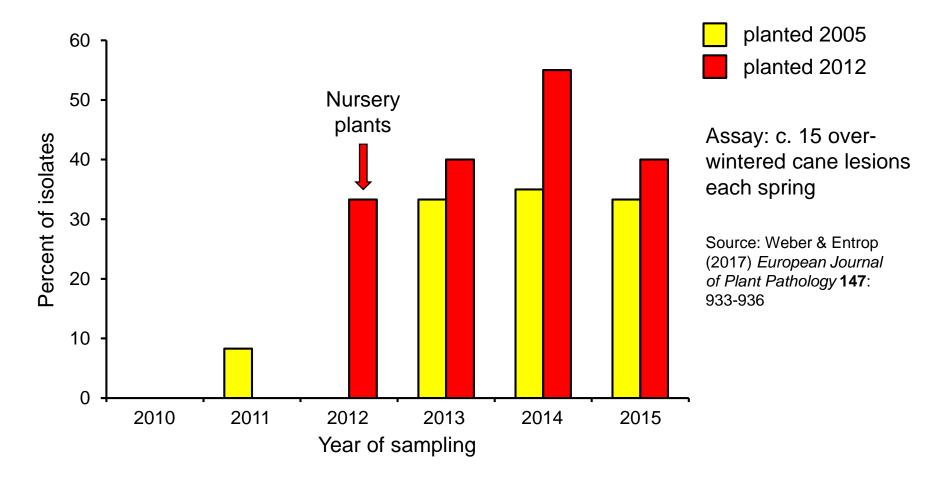


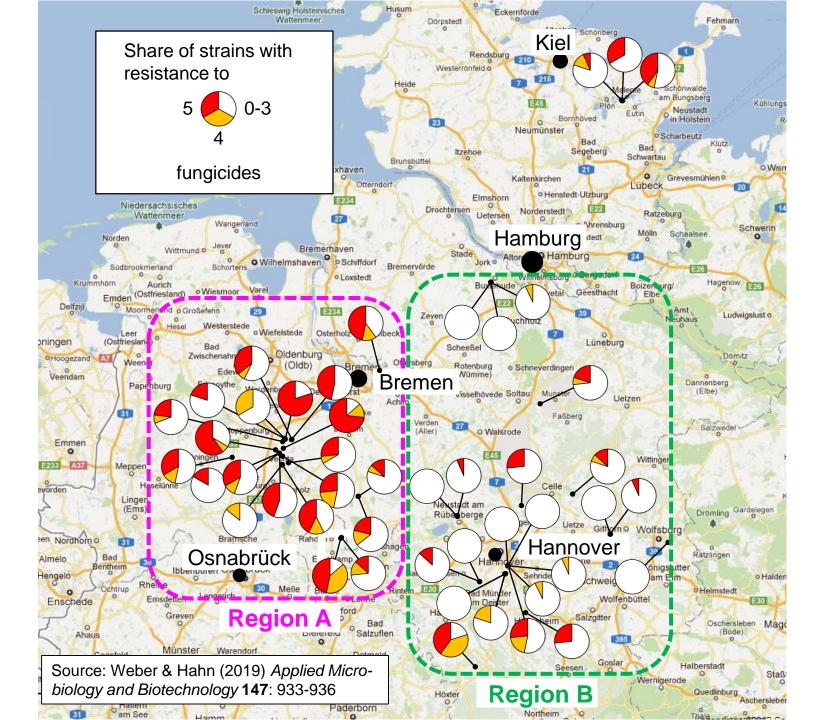


#### **Multi-resistant strains in raspberry longcanes**

| Origin | Batches    | 0x<br>res. | 1x<br>res. | 2x<br>res. | 3x<br>res. | 4x<br>res. | 5x<br>res. |
|--------|------------|------------|------------|------------|------------|------------|------------|
| 1      | 3 (n=37)   | -          | -          | 19         | 2          | 2          | 14         |
| 2      | 3 (n=45)   | -          | -          | 1          | 5          | 6          | 33         |
| 3      | 3 (n=37)   | 5          | 1          | 11         | 5          | 6          | 9          |
| 4      | 1 (n=15)   | -          | 3          | 9          | -          | -          | 3          |
| Total  | 10 (n=134) | 3.7%       | 3.0%       | 29.9%      | 9.0%       | 10.4%      | 44.0%      |

Longcane nursery plants may be heavily contaminated with *Botrytis* strains possessing multiple resistance


 $\rightarrow$  caution when planting a long-term field


Source: Weber & Entrop (2017) *European Journal of Plant Pathology* **147**: 933-936





# Spread of <u>multi-resistant strains</u> from nursery material to an adjacent established field





- 1. Biology of Botrytis
- 2. Fungicide resistance in space and time
- 3. Results from Norway
- 4. Conclusions





#### The situation in Norway 2016

Strong correlation between the total number of sprays with any of the 5 fungicide classes and

- Resistance to individual fungicides
- Multi-resistance to all fungicides

- 1. Biology of Botrytis
- 2. Fungicide resistance in space and time
- 3. Results from Norway
- 4. Conclusions

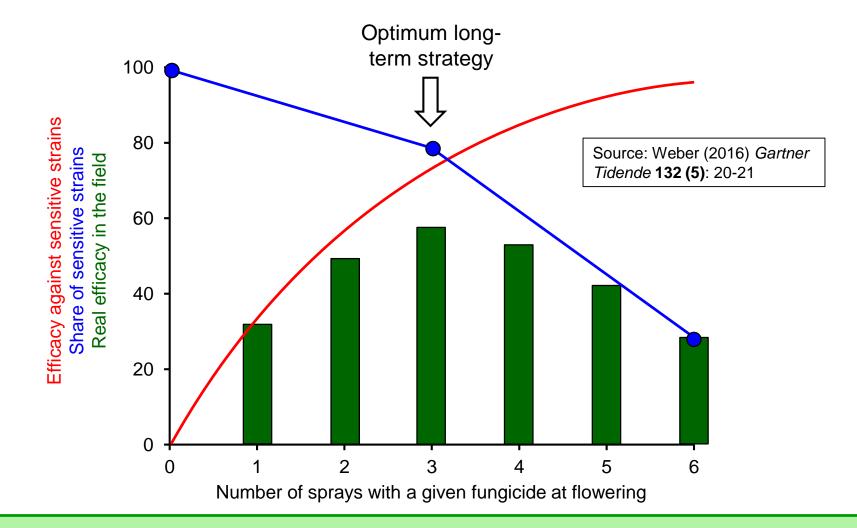




#### **Effects of excessive spray sequences**

If strains with multiple resistance are present in a field...

... the application of any fungicide will further select multi-resistant strains


- ... the more we spray, the more resistance we get
- ... but is the reverse also true?

A **less** frequent fungicide may reduce the selective advantage of multiresistant strains and **means more** fungicide efficacy in the long-term





#### How many sprays to give the optimum efficacy?







#### Non-chemical control of Botrytis

Picking and removal of infected fruit (especially at beginning of harvest!)

Moderate fertilisation

Sufficient planting distance

Ventilation (tunnel, protective coverings)

Drip irrigation instead of overhead irrigation







#### Modest use of fungicides (3 or max. 4 sprays)

+ removal of rotten fruit at harvest

= high yield security





### Literature

- 1. Weber, R.W.S. (2015). Masser af resistens i gråskimmel på jordbær. *Gartner Tidende* **7/2015**: 20-21.
- 2. Weber, R.W.S. & Entrop, A.-P. (2015). Undgå resistens mod gråskimmel. *Gartner Tidende* **8/2015**: 8-9.
- 3. Weber, R.W.S. (2016). Resistent gråskimmel i danske jordbær. *Gartner Tidende* **5/2016**: 20-21.

Roland.Weber@lwk-niedersachsen.de

## Thank you for your interest!